CHEMICAL MODIFICATION OF STEFFIMYCIN B

Paul F. Wiley ${ }^{\dagger}$, David W. Elrod ${ }^{\dagger \dagger}$ and Donald E. Harper*, ${ }^{\dagger \dagger}$
Research Laboratories, The Upjohn Company, Kalamazoo, Michigan 49001, U.S.A.
(Received for publication July 16, 1987)

Abstract

Fifteen 3-substituted analogues of steffimycin B (1) have been synthesized and their activity against P388 murine leukemia has been determined. Three of these were substantially more active than the parent compound.

Steffimycin and steffimycin B (1) were isolated some years ago, ${ }^{1,2)}$ and their structures were established by Wiley et al. ${ }^{3)}$ and Arara. ${ }^{4)}$ These compounds are anthracycline antibiotics, but they are unusual in this family since they do not contain an amino sugar moiety. The steffimycins have only borderline antitumor activity against P388 murine leukemia while almost all of the anthracyclines containing nitrogen are active in this assay. Experiments in our laboratory had yielded 3-iodo-1 as an unexpected product. These results were interpreted to confirm that the presence of a hydroxyl group and a methoxyl group ortho to the 3 position in 1 activated that position to electrophilic substitution. This suggested ways of introducing other halogens, nitrogen-containing substituents, and other substituents at that position. Such analogues (especially the nitrogen-containing ones) might have enhanced anti-leukemic activity relative to 1. It was found that such substitution occurred, and the 3 -substituent analogues described in this paper were prepared.

Chemical

Nitrogen-containing analogues of $\mathbf{1}$ were prepared in two series, carbonyl $(4 \sim 6)$ and basic amino derivatives $(\mathbf{7} \sim \mathbf{1 2})$. It was considered that a formyl group, which could then be converted to nitrogen-containing substituents, could be introduced into position 3 by direct introduction, but this did not prove to be the case necessitating an indirect route. This route consisted of treating $\mathbb{1}$ with $\mathrm{CH}_{2} \mathrm{O}$ under basic conditions to prepare 2 which was then oxidized to 3 . In both cases, but especially the latter, yields were poor. Oxidation was not achieved by the usual benzylic hydroxyl oxidation procedures but re-

[^0]Table 1. ${ }^{13} \mathrm{C}$ Chemical shift assignments of $\mathbf{1 \sim 6}$ and $13 \sim 16$.

Position No.	1	2	3	4	5	6	13	14	15	16
1	109.67	104.19	102.86	102.89	103.14	102.41	105.65	104.17	104.14	103.28
2	168.16	164.94	167.57	163.48	164.91	162.20	154.90	162.46	163.66	166.01
3	108.22	122.33	118.72	118.56	119.95	119.56	137.98	110.88	107.19	84.72
4	166.28	162.49	166.49	162.01	162.58	161.89	152.02	162.31	162.32	163.44
4 a	111.50	110.48	112.18	111.51	112.16	104.15	112.08	116.49	110.90	110.02
5	191.03	190.81	188.98	189.11	189.52	189.01	191.59	190.97	190.90	190.30
5 a	119.92	118.35	117.42	116.69	117.15	116.57	118.63	118.30	118.32	117.91
6	162.86	162.12	162.51	161.77	162.41	161.44	162.36	159.93	161.12	162.12
6a	134.38	133.84	132.57	132.54	132.92	133.04	129.52	132.44	133.10	132.87
7	73.13	71.96	72.00	71.75	72.11	77.45	71.95	71.68	71.96	71.89
8	87.55	85.78	85.77	85.53	86.36	86.04	85.70	85.64	85.66	85.53
9	77.71	76.71	76.74	76.31	76.75	76.77	76.80	76.70	76.75	76.53
10	200.04	198.99	198.98	198.73	199.09	199.29	198.98	199.90	198.90	198.73
10a	136.97	135.71	139.74	135.09	135.79	134.82	136.02	135.96	135.99	135.81
11	116.94	117.45	114.89	112.73	112.57	113.29	117.94	117.75	117.80	113.49
11a	136.09	134.31	135.63	135.09	135.46	133.25	133.88	133.98	134.00	134.71
12	181.41	179.92	180.17	180.09	180.37	180.91	179.66	179.78	179.99	179.76
12a	134.71	134.19	134.46	133.48	134.04	133.13	133.24	133.01	133.55	133.87
13		53.23	190.54	143.74	147.77	142.80				
1^{\prime}	102.36	100.82	100.78	100.56	100.79	100.79	100.72	100.68	100.71	100.59
2^{\prime}	82.53	80.60	80.54	80.86	80.60	80.67	80.55	80.47	80.50	80.36
3^{\prime}	71.87	71.24	71.30	70.66	71.32	71.23	71.36	71.25	71.31	71.11
4^{\prime}	83.98	83.31	83.34	82.89	83.99	83.37	83.37	83.29	83.33	83.16
5^{\prime}	70.35	69.13	69.09	66.75	69.08	69.07	69.60	69.08	69.10	68.91
$9-\mathrm{CH}_{3}$	24.88	22.93	22.85	22.43	22.96	23.04	22.93	22.84	22.91	22.75
$5^{\prime}-\mathrm{CH}_{3}$	17.98	17.98	17.96	17.49	17.98	17.94	18.04	17.92	17.79	17.79
$2^{\prime}-\mathrm{OCH}_{3}$	61.57	60.90	60.97	60.53	60.36	60.92	61.08	60.99	60.96	60.70
$8-\mathrm{OCH}_{3}$	61.34	60.03	60.04	59.56	60.04	60.11	60.10	60.00	60.03	59.86
$4^{\prime}-\mathrm{OCH}_{3}$	60.14	58.93	58.91	58.51	58.38	58.84	58.98	58.94	58.92	58.77
$2-\mathrm{OCH}_{3}$	58.01	56.75	57.32	56.52	56.75	56.67	57.21	57.31	57.42	57.36
$3-\mathrm{CHNOCH}_{3}$					62.70					
$1^{\prime \prime}$						159.10				
$2^{\prime \prime}$						112.46				
$3^{\prime \prime}$						129.57				
$4^{\prime \prime}$						121.46				
$5^{\prime \prime}$						129.57				
$6^{\prime \prime}$						112.46				

In ppm (δ) obtained from CDCl_{3} solutions except for 1 and 6 which were in $\mathrm{CD}_{3} \mathrm{SOCD}_{3}$ and CDCl_{3} $\mathrm{CD}_{3} \mathrm{OD}$, respectively. Trimethylsilane was the internal reference.
quired pyridinium chlorochromate. Compound 3 was then converted to its carbonyl derivatives by the usual procedures. Selectivity was not a problem as the carbonyl at C-10 reacts very sluggishly with the usual carbonyl reagents. That $\mathbf{2}$ and compounds derived from it have a substituent at $\mathbf{C - 3}$ is shown by their ${ }^{1} \mathrm{H}$ NMR spectra. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ chemical shifts of $\delta 6.75$ and $\delta 7.08$ present as doublets are assigned to $3-\mathrm{H}$ and $1-\mathrm{H}$. In compounds $\mathbf{2 \sim 5}$ the resonance for the higher field proton has disappeared. A singlet at $\delta 7.36 \sim 7.42$ is present and must arise from $1-\mathrm{H}$. Since the $3-\mathrm{H}$ proton is no longer present the substituents must be at that position. Substitution at $\mathrm{C}-3$ in the other two series of compounds rests on the same argument.

The Mannich reaction was used to introduce dialkylaminomethyl groups into 1 at C-3. Compounds 7~12 were prepared in this way. Yields were poor in all cases and purification was quite difficult.

Table 2. ${ }^{13} \mathrm{C}$ Chemical shift assignments of $\mathbf{7 \sim 1 2}$.

Position No.	7	8	9	10	11	12
1	112.49	112.75	112.24	112.73	111.10	110.52
2	163.45	166.07	165.39	165.81	165.13	163.50
3	103.02	101.94	102.3	101.85	103.55	102.06
4	162.26	163.59	163.71	163.32	163.57	162.79
4 a	115.62	115.19	116.51	116.10	117.09	115.79
5	189.84	189.94	189.13	188.56	190.21	188.64
5a	118.64	116.59	119.39	119.61	118.81	117.96
6	162.04	162.3	162.45	162.37	162.61	161.23
6 a	132.56	133.18	133.15	133.07	133.08	132.01
7	71.72	72.16	72.15	72.14	72.10	71.10
8	85.58	85.89	86.00	85.99	85.90	84.91
9	76.42	76.71	76.72	76.68	76.72	75.67
10	198.82	197.28	199.29	199.32	199.04	198.07
10a	135.12	135.76	135.12	135.17	135.49	134.23
11	116.87	116.59	117.07	116.26	118.62	117.02
11a	133.34	134.79	134.94	134.62	134.44	133.56
12	180.33	181.58	181.28	181.74	180.40	179.62
12a	132.84	135.58	133.67	133.48	133.78	132.71
13	50.44	49.00	49.02	53.52	50.19	49.52
1^{\prime}	100.42	100.65	100.78	100.69	100.86	99.86
2^{\prime}	80.34	80.56	80.71	80.67	80.73	79.83
3^{\prime}	70.94	71.28	71.78	71.21	71.29	70.09
4^{\prime}	83.08	83.97	83.38	83.33	83.36	82.70
5^{\prime}	68.72	68.83	69.01	68.92	69.13	68.10
$9-\mathrm{CH}_{3}$	22.72	22.98	23.05	23.00	23.04	22.05
$5^{\prime}-\mathrm{CH}_{3}$	17.69	17.94	17.97	17.94	18.00	16.92
$2^{\prime}-\mathrm{OCH}_{3}$	60.60	60.91	60.84	60.86	60.84	59.79
$8-\mathrm{OCH}_{3}$	59.67	59.94	59.99	59.91	60.04	58.94
$4^{\prime}-\mathrm{OCH}_{3}$	58.59	58.84	58.84	58.82	58.89	57.84
$2-\mathrm{OCH}_{3}$	56.55	56.43	56.43	56.30	56.57	55.42
$1^{\prime \prime}$	44.02	53.29	53.75	53.82	53.42	53.65
$2^{\prime \prime}$		27.06	23.60	25.18	66.85	51.67
$3^{\prime \prime}$		20.46		23.43		
$4^{\prime \prime}$		13.79				
$\mathrm{CH}_{3} \mathrm{~N}$						44.72

In ppm (δ) obtained from CDCl_{3} solutions containing trimethylsilane as internal reference. Carbon atoms in the $\mathrm{R}_{2} \mathrm{n}$ groups are given the same number in both R 's.

A number of other procedures for purifying these compounds other than those mentioned in the experimental were tried. None were superior to those actually used, and most were inferior.

Halogenation of $\mathbf{1}$ to give $13 \sim \mathbf{1 6}$ was done by a variety of procedures differing in each case. Fluorination was done with $\mathrm{CF}_{3} \mathrm{OF}$, chlorination with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCl}$, bromination with elemental Br_{2}, and iodination by a periodic acid procedure similar to that of SuZuki. ${ }^{5)}$

Poor analytical values were obtained for a number of these compounds. Melt solvate assay results were interpreted to indicate solvent occlusion. However, high resolution mass spectra indicated quite clearly the molecular formulas proposed.

Biological

All of the compounds prepared except 6 retained the Gram-positive antibacterial activity of 1.

The halogenated compounds and those compounds derived from 3 -formyl 1 were inactive against P388 murine leukemia. However, there was considerable enhancement of the in vivo anti-leukemic activity in the case of three of the Mannich reaction products (Table 3). While $\mathbf{1}$ has, at most, borderline activity in this assay, compounds $\mathbf{9 , 1 0}$ and $\mathbf{1 2}$ showed substantial activity in the range of many of the anthracyclines containing amino sugars. For example the \% T / C of daunorubicin has been reported to be $175 .{ }^{8,7)}$

Experimental

3-Hydroxymethylsteffimycin B (2)

A solution of $11.0 \mathrm{~g}(18.7 \mathrm{mmol})$ of $\mathbf{1}$ in 250 ml of $25 \%\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ solution was stirred at room temp while adding dropwise 250 ml of $37 \% \mathrm{CH}_{2} \mathrm{O}$

Table 3. Anti-leukemic activity of compounds $\mathbf{1} \sim \mathbf{1 6}$.

Compounds	Dose (mg/kg/day)	T/C $(\%)$
$\mathbf{1}$	400	110
$\mathbf{2}$	50	118
$\mathbf{3}$	50	125
4	100	122
$\mathbf{5}$	100	105
$\mathbf{6}$	100	110
$\mathbf{7}$	25	120
$\mathbf{8}$	25	120
$\mathbf{9}$	25	160
$\mathbf{1 0}$	25	156
$\mathbf{1 1}$	50	130
$\mathbf{1 2}$	50	160
$\mathbf{1 3}$	400	105
$\mathbf{1 4}$	400	115
$\mathbf{1 5}$	400	100
$\mathbf{1 6}$	400	100

P388 leukemia cells (10^{6}) were injected intraperitoneally on day 0 , and drug was injected on days 1,5 and 9 . solution. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 4 hours, cooled to room temp and stirred for 16 hours. The reaction mixture was evaporated in vacuo to a volume of about 300 ml . After the addition of 500 ml of $\mathrm{H}_{2} \mathrm{O}$, the solution was adjusted to pH 6.0 with 1 N HCl and extracted with five $250-\mathrm{ml}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ (9:1). The combined extracts were evaporated in vacuo to an oily residue which was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(9: 1)$ to which was added 500 ml of Skellysolve B. The supernatant was decanted, and the residue was dried in vacuo. The residue was then chromatographed on 550 g of silica gel using first 3 liters of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then 2.5 liters of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(95: 5)$ before color appeared after which one hundred and fifty-five $20-\mathrm{ml}$ fractions were collected. On the basis of $\mathrm{TLC}^{\text {in }} \mathrm{CHCl}_{3}$ $\mathrm{CH}_{3} \mathrm{OH}(9: 1 ; \mathrm{Rf} 0.40)$ fractions $1 \sim 14$ and fractions $15 \sim 45$ were pooled. After evaporation of the pools in vacuo there was obtained 7.51 and 4.19 g , respectively, with the second pool being pure 2 . The first pool residue was chromatographed on 375 g of silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ (95:5) and collecting two hundred $6-\mathrm{ml}$ fractions after color appeared. Fractions $73 \sim 150$ were combined as $\mathbf{2}$ on the basis of TLC as above and evaporated in vacuo, yield 1.56 g . The total yield of pure 2 was $5.75 \mathrm{~g}(49 \%)$.

Five hundred mg of the second lot of $\mathbf{2}$ was dissolved in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Four ml of cyclohexane was added slowly to the boiling solution. After the mixture had stood at room temp for 24 hours it was filtered to give $381 \mathrm{mg} ; \mathrm{mp} 235 \sim 238^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+9.6^{\circ}\left(c 0.237, \mathrm{CHCl}_{3}\right)$; UV $\lambda_{\mathrm{max}}^{\mathrm{OH}_{3} \mathrm{OH}} \mathrm{nm}(\varepsilon) 216$ (sh, $16,685), 233(19,900), 280(18,240), 439(11,370) ;$ IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3440,1750,1660,1595,1550$, $1425,1365,1310,1250,1080,1045,1010,905,860,820,760,750 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42(3 \mathrm{H}, \mathrm{d})$, $1.52(3 \mathrm{H}, \mathrm{s}), 3.08(1 \mathrm{H}, \mathrm{t}), 3.57(11 \mathrm{H}, \mathrm{s}), 3.78(2 \mathrm{H}, \mathrm{m}), 4.03(3 \mathrm{H}, \mathrm{s}), 4.80(2 \mathrm{H}, \mathrm{s}), 5.19(1 \mathrm{H}, \mathrm{d}), 5.62(1 \mathrm{H}$, br s) $7.42(1 \mathrm{H}, \mathrm{s}), 8.31(1 \mathrm{H}, \mathrm{s}), 12.30(1 \mathrm{H}, \mathrm{s}), 12.90(1 \mathrm{H}, \mathrm{s})$; fast atom bombardment mass spectrum (FAB-MS) $m / z 618$; caled 618.

```
Anal Calcd for \(\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{14}\) :
    Found: \(\quad\) C 57.83, H 5.55 .
```


3-Formylsteffimycin B (3)

A solution of $1.04 \mathrm{~g}(4.8 \mathrm{mmol})$ of finely ground pyridinium chlorochromate in 100 ml of spectroscopic grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred, and a solution of $1.92 \mathrm{~g}(3.1 \mathrm{mmol})$ of $\mathbf{2}$ in 200 ml of spectroscopic grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The solution was stirred at room temp for 4 hours and evaporated to dryness in vacuo. The residue was dissolved in 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(9: 1)$, and the solution was washed
with two $100-\mathrm{ml}$ portions of 0.1 N HCl and 100 ml of $\mathrm{H}_{2} \mathrm{O}$. Evaporation in vacuo gave 1.77 g . This was chromatographed on 177 g of silica gel eluting with 800 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 900 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$ (95:5), 850 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(9: 1)$ and collecting three hundred and fifty $5-\mathrm{ml}$ fractions. On the basis of TLC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(78: 20: 2$; Rf 0.55$)$ fractions $231 \sim 420$ were combined and evaporated in vacuo, weight 666 mg . The residue was dissolved in a mixture of $145 \mathrm{ml} \mathrm{of} \mathrm{CH}_{3} \mathrm{OH}$ $\mathrm{H}_{2} \mathrm{O}(13: 16)$ and acidified to pH 2 with 1.0 N HCl . The $\mathrm{CH}_{3} \mathrm{OH}$ was removed by evaporation, and the aqueous portion was extracted with three $50-\mathrm{ml}$ portions of CHCl_{3}. Evaporation in vacuo of the combined extracts gave 482 mg whose TLC in the above system showed that it was mostly 3 .

One hundred and nine mg was subjected to countercurrent distribution in a $335-\mathrm{ml}$ Ito Coil planetary centrifuge using the two phases of $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(4: 1: 4: 1)$ with the upper phase being used as the stationary phase and collecting sixty $10-\mathrm{ml}$ fractions. Combination of fractions $32 \sim 37$ on the basis of TLC in the above system and evaporation in vacuo gave 25 mg homo-
 279 (19,620), 441 (10,445); IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3460,1710,1695,1690,1644,1595,1475,1375,1320$, $1240,1200,1185,1090,1010,860,765,750 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.31(3 \mathrm{H}, \mathrm{d}), 1.45(3 \mathrm{H}, \mathrm{s}), 2.98(1 \mathrm{H}$, t), $3.48(11 \mathrm{H}, \mathrm{s}), 3.67(1 \mathrm{H}, \mathrm{s}), 4.06(3 \mathrm{H}, \mathrm{s}), 5.23(1 \mathrm{H}, \mathrm{d}), 5.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.42(1 \mathrm{H}, \mathrm{s}), 8.28(1 \mathrm{H}, \mathrm{s}), 10.4$ $(1 \mathrm{H}, \mathrm{s}), 13.16(2 \mathrm{H}, \mathrm{s})$; FAB-MS $\mathrm{m} / \mathrm{z} 616$; calcd 616.

Anal Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{14}$: C 58.43, H 5.24.
Found: C 58.26, H 5.52.

3-Formylsteffimycin B Oxime (4)

A mixture of $200 \mathrm{mg}(0.32 \mathrm{mmol})$ of $3,26.3 \mathrm{mg}(0.38 \mathrm{mmol})$ of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, 45 \mathrm{mg}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, 50 ml of EtOH , and 50 ml of $\mathrm{H}_{2} \mathrm{O}$ was stirred for 18 hours. The resulting solution was poured into 100 ml of $\mathrm{H}_{2} \mathrm{O}$, and the EtOH was removed by evaporation in vacuo. The aqueous was adjusted to pH 7.5 with 0.1 N HCl and extracted with five $50-\mathrm{ml}$ portions of CHCl_{3}. The CHCl_{3} extracts were combined and evaporated to dryness in vacuo, weight 181 mg . A portion of this (62 mg) was chromatographed on 19 g of silica gel eluting with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(95: 5)$ to give 40 mg . This was dissolved in $10-\mathrm{ml}$ of CHCl_{3} and washed with three $10-\mathrm{ml}$ portions of $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} solution was evaporated in vacuo to give $14 \mathrm{mg} ; \mathrm{mp} 170 \sim 183^{\circ} \mathrm{C}$ (dec); Rf 0.12 (TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1)$); $[\alpha]_{5}^{]^{5}}+128^{\circ}$ (c $0.236, \mathrm{CHCl}_{3}$); UV $\lambda_{\max }^{\text {GHa }} \mathrm{OH} \mathrm{nm}(\varepsilon) 233(20,790), 291(16,815), 440(7,470)$; IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3350$, 1700, 1665, 1610, 1565, 1450, 1375, 1090, 1020, 750; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40(3 \mathrm{H}, \mathrm{d}), 1.52(3 \mathrm{H}, \mathrm{s})$, $3.10(1 \mathrm{H}, \mathrm{t}), 3.57(11 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{d}), 4.08(3 \mathrm{H}, \mathrm{s}), 5.19(1 \mathrm{H}, \mathrm{d}), 5.61(1 \mathrm{H}, \mathrm{br}), 7.42(1 \mathrm{H}, \mathrm{s}), 8.25$ ($1 \mathrm{H}, \mathrm{s}$), $8.53(1 \mathrm{H}, \mathrm{s})$; FAB-MS $m / z 631.1896$ (calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{14}, 631.1981$).

Anal Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{14}: \quad \mathrm{C} 57.05, \mathrm{H} 5.27$, N 2.22 .
Found:
C 55.28, H 5.16, N 2.26 .

3-Formylsteffimycin B Methoxime (5)

A mixture of $200 \mathrm{mg}(0.32 \mathrm{mmol})$ of $3,36 \mathrm{mg}(0.43 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{ONH}_{2} \cdot \mathrm{HCl}, 212 \mathrm{mg}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 100 ml of $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(1: 1)$ was stirred at room temp for 18 hours. The reaction mixture was poured into 100 ml of $\mathrm{H}_{2} \mathrm{O}$, and the solution was adjusted to pH 4.25 with 1 N HCl . Extraction with four $25-\mathrm{ml}$ fraction portions of CHCl_{3} and evaporation in vacuo gave 181 mg of product which was chromatographed on 36 g of silica gel eluting with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(95: 5)$ and collecting 4.5 ml fractions. Fractions $15 \sim 24$ were combined on the basis of TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{8} \mathrm{OH}$ ($9: 1$; Rf 0.44) and evaporated in vacuo. The residue was crystallized from 25 ml of EtOH to give 54 mg
 295 (29,410), 439 (12,900); IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3480,1705,1670,1610,1570,1460,1370,1255,1190$, 1030,$760 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.41(3 \mathrm{H}, \mathrm{d}), 1.51(3 \mathrm{H}, \mathrm{s}), 3.05(1 \mathrm{H}, \mathrm{t}), 3.58(11 \mathrm{H}, \mathrm{s}), 3.69(1 \mathrm{H}, \mathrm{s}), 4.04$ $(3 \mathrm{H}, \mathrm{s}), 5.16(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.36(1 \mathrm{H}, \mathrm{s}), 8.29(1 \mathrm{H}, \mathrm{s}), 8.45(1 \mathrm{H}, \mathrm{s})$; FAB-MS m/z 645.2070 (calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{14}, 645.2057$).

Anal Calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{14}$: C 57.67, H 5.46, N 2.17 .
Found: \quad C 57.20, H 5.59, N 2.13.
3-Formylsteffimycin B Phenylhydrazone (6)
A solution of 1 ml of phenylhydrazine in 20 ml of $\mathrm{CH}_{3} \mathrm{OH}$ was added to a solution of 200 mg
(0.32 mmol) of 3 in 20 ml of $\mathrm{CH}_{3} \mathrm{OH}$. One drop of $\mathrm{CH}_{3} \mathrm{COOH}$ was added, and the solution was boiled for 12 minutes and poured into 50 ml of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with four $50 \mathrm{-ml}$ portions of CHCl_{3}. The combined extracts were evaporated in vacuo to give 240 mg which was chromatographed on 48 g of silica gel eluting with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(95: 5)$ and collecting one hundred and twenty $4-\mathrm{ml}$ fractions. On the basis of TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1 ; \mathrm{Rf} 0.61)$ fractions $31 \sim 37$ were combined and evaporated in vacuo giving 99 mg ; $\mathrm{mp} 187 \sim 194^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}^{\mathrm{CH}_{3} \mathrm{OH}} \mathrm{nm}(\varepsilon) 202(32,335)$, $234(32,405), 263(25,025), 282(22,840), 384(14,825), 436(12,000)$; IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3440,3375$, $1700,1660,1600,1540,1455,1375,1320,1250,1215,1090,1025,750 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 1.38(3 \mathrm{H}, \mathrm{d}), 1.49(3 \mathrm{H}, \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{t}), 3.62(3 \mathrm{H}, \mathrm{s}), 3.65(6 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{d}), 4.00(2 \mathrm{H}, \mathrm{s}), 5.18(1 \mathrm{H}$, d), $5.53(1 \mathrm{H}, \mathrm{br} s), 6.8 \sim 7.5(6 \mathrm{H}, \mathrm{m}), 8.23(1 \mathrm{H}, \mathrm{s}) ;$ FAB-MS $m / z 706.2351$ (calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{13}$, 706.2374).
$\begin{array}{cl}\text { Anal Calcd for } \mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{13}: & \text { C } 61.18, \mathrm{H} 5.42, \mathrm{~N} 3.96 . \\ \text { Found: } & \text { C } 59.45, \mathrm{H} 5.36, \mathrm{~N} 3.30 .\end{array}$
3-Dimethylaminomethylsteffimycin B (7)
A solution of $11 \mathrm{~g}(17.8 \mathrm{mmol})$ of 1 in 250 ml of $26 \%\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ was stirred while adding dropwise 250 ml of $37 \% \mathrm{CH}_{2} \mathrm{O}$ solution. The reaction mixture was stirred at $80 \sim 85^{\circ} \mathrm{C}$ for 22 hours. Three hundred ml of $\mathrm{H}_{2} \mathrm{O}$ was added, and the solution was adjusted to pH 6.2 with conc HCl . The solution was extracted with five $250-\mathrm{ml}$ portions of CHCl_{3}. The combined extracts were evaporated in vacuo to a weight of about 7 g which was chromatographed on 300 g of silica gel eluting with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (95:5). On the basis of TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(78: 20: 2 ; \mathrm{Rf} 0.43)$ those fractions containing 7 were combined and evaporated in vacuo, yield 527 mg ; mp $134 \sim 137^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}+119^{\circ}(c 0.72$, CHCl_{3}); UV $\lambda_{\text {max }}^{\mathrm{OH}_{3} \mathrm{OH}} \mathrm{nm}(\varepsilon) 216$ (sh, 27,930), $229(28,380), 266(23,800), 278(23,235), 441(9,805)$; IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3410,1700,1670,1605,1435,1375,1320,1285,1250,1185,1110,1020,915,750$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.41(3 \mathrm{H}, \mathrm{d}), 1.52(3 \mathrm{H}, \mathrm{s}), 2.58(6 \mathrm{H}, \mathrm{s}), 3.14(1 \mathrm{H}, \mathrm{t}), 3.61(11 \mathrm{H}, \mathrm{s}), 3.82 \sim 3.90(3 \mathrm{H}$, d), $4.07(3 \mathrm{H}, \mathrm{s}), 5.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.34(1 \mathrm{H}, \mathrm{s}), 8.32(1 \mathrm{H}, \mathrm{s})$; FAB-MS $m / z 645.2413$ (calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{13}, 645.2421$).

Anal Caled for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{13}$: C 59.53, H 6.09, N 2.17 .
Found: \quad C 57.90, H 6.29, N 1.74 .

3-Di- n-butylaminomethylsteffimycin $\mathrm{B}(8)$

A solution of $2 \mathrm{~g}(3.4 \mathrm{mmol})$ of 1 in 30 ml of $\left(n-\mathrm{C}_{4} \mathrm{H}_{8}\right)_{2} \mathrm{NH}$ was stirred while adding dropwise 30 ml of $37 \% \mathrm{CH}_{2} \mathrm{O}$. Fifty ml of EtOH was added, and the solution was heated at $75 \sim 80^{\circ} \mathrm{C}$ for 68 hours. The reaction mixture was evaporated in vacuo to a black oil. This was mixed with 100 ml of ether, and 500 ml of Skellysolve B was added. The supernatant was decanted, and the residue was dried in vacuo, weight 2.38 g . The residue was chromatographed on 224 g of silica gel eluting successively with 120 ml of CHCl_{3} and 2 liters of $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(95: 5)$. Those fractions containing 8 as determined by TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1 ; \mathrm{Rf} 0.58)$ were combined and evaporated in vacuo to give 226 mg ; mp $119 \sim 125^{\circ} \mathrm{C}$; UV $\lambda_{\max }^{\mathrm{CH}} \mathrm{CH}_{3} \mathrm{OH} \mathrm{nm}(\varepsilon) 271(18,040), 441(17,160), 510(\mathrm{sh}, 3,775)$; IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3410,1705,1665,1610,1460,1375,1315,1250,1195,1090,1030,760 ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.97(6 \mathrm{H}, \mathrm{t}), 1.39(3 \mathrm{H}, \mathrm{d}), 1.51(3 \mathrm{H}, \mathrm{s}), 1.15 \sim 1.88(4 \mathrm{H}, \mathrm{m}), 2.70(4 \mathrm{H}, \mathrm{m}), 3.03(1 \mathrm{H}, \mathrm{t}), 3.58(11 \mathrm{H}$, s), $3.68(2 \mathrm{H}, \mathrm{m}), 4.02(3 \mathrm{H}, \mathrm{s}), 5.18(1 \mathrm{H}, \mathrm{d}), 5.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.39(1 \mathrm{H}, \mathrm{s}), 8.34(1 \mathrm{H}, \mathrm{s}) ;$ FAB-MS m/z 729.3356 (calcd for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{NO}_{13}, 729.3360$).

Anal Calcd for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{NO}_{13}$: C 62.54, H 7.04, N 1.92 . Found: \quad C 61.47, H 7.14, N 1.76.

3-Pyrrolidinomethylsteffimycin B (9)

A solution of $2 \mathrm{~g}(3.4 \mathrm{mmol})$ of $\mathbf{1}$ in 34 ml of pyrrolidine was stirred while adding 34 ml of 37% $\mathrm{CH}_{2} \mathrm{O}$ solution dropwise. After the solution had been stirred at room temp for 48 hours, it was poured into 500 ml of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to 7.35 with conc HCl . Extraction with five 200 ml portions of CHCl_{3} and evaporation of the combined extracts in vacuo gave 2.82 g . This material was chromatographed on 140 g of silica gel eluting with 200 ml of $\mathrm{CHCl}_{3}, 1$ liter of $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (98:2), and 2.2 liters of $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (95:5). On the basis of TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ (78:20:2; Rf 0.47) those fractions containing 9 were combined and evaporated in vacuo, yield 755 mg ;
$\mathrm{mp}>250^{\circ} \mathrm{C}(\mathrm{dec}) ; \mathrm{UV} \lambda_{\max }^{\mathrm{CH}_{3} \mathrm{OH}} \mathrm{nm}(\varepsilon) 215(\mathrm{sh}, 21,570), 229(21,910), 272(18,655), 444(6,105), 510(\mathrm{sh}$, 3,725); IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3390,1700,1660,1605,1450,1370,1315,1245,1185,1085,1020,750$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.39(3 \mathrm{H}, \mathrm{d}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.93(4 \mathrm{H}, \mathrm{s}), 2.85(4 \mathrm{H}, \mathrm{s}), 3.06(1 \mathrm{H}, \mathrm{t}), 3.56(8 \mathrm{H}, \mathrm{s}), 3.59$ $(3 \mathrm{H}, \mathrm{s}), 3.70(2 \mathrm{H}, \mathrm{m}), 4.01(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{s}), 5.20(1 \mathrm{H}, \mathrm{d}), 5.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.39(1 \mathrm{H}, \mathrm{s}), 8.32(1 \mathrm{H}$, s); FAB-MS $m / z 671.2595$ (calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{13}, 671.2578$).

$$
\begin{array}{ll}
\text { Anal Calcd for } \mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{13}: & \text { C } 60.80, \mathrm{H} 6.15, \mathrm{~N} 2.09 . \\
\text { Found: } & \text { C } 60.13, \mathrm{H} 6.31, \mathrm{~N} 1.99 .
\end{array}
$$

3-Piperidinomethylsteffimycin B(10)

A solution of $2 \mathrm{~g} \mathrm{(} 3.4 \mathrm{mmol}$) of 1 in 55 ml of piperidine was stirred while adding dropwise 30 ml of $37 \% \mathrm{CH}_{2} \mathrm{O}$ solution. The solution was stirred at $90 \sim 95^{\circ} \mathrm{C}$ for 3 hours, cooled to room temp and evaporated in vacuo to about 50 ml . The residue was dissolved in 100 ml of ether, and 500 ml of Skellysolve B was added. The supernatant was decanted, and the residue was partitioned between 200 ml of CHCl_{3} and 200 ml of $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} layer was evaporated in vacuo, and the residue was chromatographed on 115 g of silica gel by ascending dry column chromatography eluting with 1.62 liters of CHCl_{3} then $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1)$ obtaining 5.1 g of oily material. This was chromatographed on 50 g of silica gel eluting with EtOAc, then EtOAc- $\mathrm{CH}_{3} \mathrm{OH}(95: 5)$, and $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ $(9: 1)$ collecting thirty-two $10-\mathrm{ml}$ fractions, 103 fractions, and 95 fractions, respectively. On the basis of TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1 ; \operatorname{Rf} 0.35)$ fractions $147 \sim 185$ were combined and evaporated in vacuo, yield 435 mg . Fractions $186 \sim 228$ were combined and evaporated in vacuo, yield 176 mg . The latter was purified further by preparative TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(95: 5)$, yield 130 mg . The two products were combined and chromatographed on 60 g of silica gel eluting with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(85$: $14: 1$) collecting fifty $4-\mathrm{ml}$ fractions. Fractions $26 \sim 40$ were combined on the basis of TLC and evaporated in vacuo, yield 120 mg ; $\mathrm{mp} 157 \sim 172^{\circ} \mathrm{C}(\mathrm{dec}) ;[\alpha]_{\mathrm{D}}^{25}+171^{\circ}\left(c 0.076, \mathrm{CHCl}_{3}\right)$; UV $\lambda_{\text {max }}^{\mathrm{OH} \mathrm{HaH}_{3} \mathrm{~nm}}(\varepsilon)$ $229(25,895), 272(21,030), 444(9,130) ; \mathrm{IR} \nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3430,1705,1665,1615,1325,1290,1255$, 1095, 1030, 755; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.37(3 \mathrm{H}, \mathrm{d}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.70 \sim 2.3(6 \mathrm{H}, \mathrm{m}), 3.0 \sim 3.25(5 \mathrm{H}, \mathrm{m})$, $3.57,3.61(9 \mathrm{H}, 2 \times \mathrm{s}), 3.74(2 \mathrm{H}, \mathrm{m}), 4.01(3 \mathrm{H}, \mathrm{s}), 4.68(1 \mathrm{H}, \mathrm{d}), 5.23(1 \mathrm{H}, \mathrm{d}), 5.71(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.23(1 \mathrm{H}$, s), $8.27(1 \mathrm{H}, \mathrm{s})$; FAB-MS $m / z 685.2723$ (calcd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{NO}_{13}, 685.2734$).

$$
\begin{array}{ll}
\text { Anal Calcd for } \mathrm{C}_{35} \mathrm{H}_{43} \mathrm{NO}_{13}: & \text { C } 61.30, \mathrm{H} 6.32, \mathrm{~N} 2.04 . \\
\text { Found: } & \text { C } 59.81, \mathrm{H} 6.32, \mathrm{~N} 1.96 .
\end{array}
$$

3-Morpholinomethylsteffimycin B (11)

A solution of $2 \mathrm{~g}(3.4 \mathrm{mmol})$ of $\mathbf{1}$ in 34 ml of morpholine was stirred while adding 34 ml of 37% $\mathrm{CH}_{2} \mathrm{O}$ solution dropwise. The solution was stirred and heated at $80 \sim 85^{\circ} \mathrm{C}$ for 23 hours. The reaction mixture was evaporated in vacuo to a brown oil which was chromatographed on 100 g of silica gel by dry column ascending chromatography eluting with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCH}_{3}-\mathrm{CH}_{3} \mathrm{COCH}_{3}-\mathrm{H}_{2} \mathrm{O}$ ($70: 20$: 11) and collecting $10-\mathrm{ml}$ fractions. Fractions $5 \sim 34$ were combined and evaporated in vacuo. The resultant residue was dissolved in 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to which was added 900 ml of Skellysolve B . The supernatant was decanted, and the residue (2.34 g) was chromatographed on 115 g of silica gel eluting with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{COCH}_{3}-$ Skellysolve $\mathrm{B}(16: 3: 4), \mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (95:5), and $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ ($9: 1$) using 1.47 liters, 750 ml , and 200 ml , respectively. Those fractions containing 11 were combined on the basis of TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1 ; \mathrm{Rf} 0.46)$ and evaporated in vacuo to give 1.72 g . Two hundred mg was purified by preparative TLC in the above $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-$ Skellysolve \mathbf{B} system, yield 99 mg ; mp $155 \sim 165^{\circ} \mathrm{C}$ (dec); UV $\lambda_{\text {mas }}^{\mathrm{OH}_{3} \mathrm{OH}} \mathrm{nm}(\varepsilon) 216(24,835), 231(25,659), 279(22,568)$, 442 (12,283); IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3400,1700,1665,1600,1450,1370,1315,1280,1250,1090,1010$, 860,$745 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.40(3 \mathrm{H}, \mathrm{d}), 1.51(3 \mathrm{H}, \mathrm{s}), 2.62(4 \mathrm{H}, \mathrm{m}), 3.25(\mathrm{~m}), 3.56(11 \mathrm{H}, \mathrm{s}), 3.75$ $(5 \mathrm{H}, \mathrm{m}), 4.03(3 \mathrm{H}, \mathrm{s}), 5.15(1 \mathrm{H}, \mathrm{d}), 5.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.42(1 \mathrm{H}, \mathrm{s}), 8.32(1 \mathrm{H}, \mathrm{s}) ;$ FAB-MS m/z 687.2521 (calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{14}, 687.2527$).

Anal Calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{14}:$ C 59.38, H 6.01, N 2.04 .
Found: \quad C 58.74, H 6.23, N 1.98 .

3-(4-Methylpiperazinomethyl)steffimycin B (12)

A solution of $2 \mathrm{~g}(3.4 \mathrm{mmol})$ of 1 in 30 ml of N-methylpiperazine was stirred while adding 30 ml of $37 \% \mathrm{CH}_{2} \mathrm{O}$ solution dropwise. The solution was heated at $80 \sim 82^{\circ} \mathrm{C}$ for 4 hours then stirred at
room temp for 18 hours. The reaction mixture was partitioned between 1.5 liters each of the two phases of $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(1: 1: 1)$. The lower phase was removed and evaporated in vacuo to an oil. The upper phase was adjusted to pH 7.2 with conc HCl extracted with four $400-\mathrm{ml}$ portions of CHCl_{3}. The combined extracts were evaporated in vacuo, and the residues were combined and dissolved in 50 ml of ether to which was added 200 ml of Skellysolve B. Filtration gave 2.0 g which was chromatographed on 125 g of silica gel using $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(95: 5)$ for 775 ml then $\mathrm{CHCl}_{3}-$ $\mathrm{CH}_{3} \mathrm{OH}(9: 1)$ for 775 ml . On the basis of TLC in $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(78: 20: 1 ; \mathrm{Rf} 0.42)$ the fractions containing 12 were combined and evaporated in vacuo, yield 464 mg ; mp $133 \sim 139^{\circ} \mathrm{C}$; [$\left.\alpha\right]_{\mathrm{D}}^{25}$ $+29^{\circ}\left(c 0.3798, \mathrm{CHCl}_{3}\right) ; \mathrm{UV} \lambda_{\max }^{\mathrm{CH}_{3} \mathrm{OH}} \mathrm{nm}(\varepsilon) 215(18,305), 231(19,390), 279(17,605), 440(10,220)$; IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3375,1695,1650,1590,1440,1360,1305,1275,1240,1080,1015,740 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.38(3 \mathrm{H}, \mathrm{d}), 1.52(3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 2.35 \sim 2.77(8 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}, \mathrm{t}), 3.53(3 \mathrm{H}, \mathrm{s}), 3.57$ $(6 \mathrm{H}, \mathrm{s}), 3.73(2 \mathrm{H}, \mathrm{s}), 3.98(3 \mathrm{H}, \mathrm{s}), 5.20(1 \mathrm{H}, \mathrm{d}), 5.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.40(1 \mathrm{H}, \mathrm{s}), 8.34(1 \mathrm{H}, \mathrm{s}) ;$ FAB-MS $m / z 700.2844$ (calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{13}, 700.2843$).

Anal Calcd for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{13}$: C 59.99, H 6.33, N 4.80 .
Found:
C 57.06, H 6.15, N 4.23 .

3-Fluorosteffimycin B (13)

A solution of $5.0 \mathrm{~g}(8.5 \mathrm{mmol})$ of 1 in 125 ml of CHCl_{3} was stirred while bubbling $\mathrm{CF}_{3} \mathrm{OF}$ through for 2 minutes followed by refluxing for 18 hours. The solution was shaken with 125 ml of $\mathrm{H}_{2} \mathrm{O}$, the CHCl_{3} layer was removed, and the aqueous layer was extracted with two $75-\mathrm{ml}$ portions of CHCl_{3}. The CHCl_{3} layers were combined and evaporated in vacuo, yield 5.14 g . This solid was purified by chromatographing five times on silica gel using $532 \mathrm{~g}, 65.5 \mathrm{~g}, 318 \mathrm{~g}, 326 \mathrm{~g}$ and 203 g of silica gel successively. Fractions containing 13 were combined in each case on the basis of TLC in $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{3} \mathrm{OH}(65: 25: 10 ; \mathrm{Rf} 0.23)$. The solvents used were the above in the first and third chromatographies, the same solvent in the ratio $74: 25: 1$ in the second, and the same solvent in the ratio $70: 25: 5$ in the last two, yield $661 \mathrm{mg} ; \mathrm{mp} 218 \sim 227^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}^{\mathrm{EtOH}} \mathrm{nm}(\varepsilon) 214$ $(25,600), 232(29,200), 278(26,260), 434(8,750), 535(4,350) ;$ IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 2955,2855,1715$, $1635,1435,1420,1390,1260,1190,1165,1115,1075,1035 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33(3 \mathrm{H}, \mathrm{d}), 1.45$ $(3 \mathrm{H}, \mathrm{s}), 3.01(1 \mathrm{H}, \mathrm{t}), 3.49(3 \mathrm{H}, \mathrm{s}), 3.52(6 \mathrm{H}, \mathrm{d}), 3.68(1 \mathrm{H}, \mathrm{d}), 4.02(3 \mathrm{H}, \mathrm{s}), 5.12(1 \mathrm{H}, \mathrm{d}), 5.53(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $7.46(1 \mathrm{H}, \mathrm{s}), 8.30(1 \mathrm{H}, \mathrm{s}), 11.69(1 \mathrm{H}, \mathrm{s}), 12.69(1 \mathrm{H}, \mathrm{s}) ;$ FAB-MS $\mathrm{m} / \mathrm{z} 606$; calcd 606.

Anal Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{FO}_{13}$:
Found:
C 57.43, H 5.15.
C 56.02, H 5.19.

3-Chlorosteffimycin B (14)

A solution of $5.0 \mathrm{~g}(8.5 \mathrm{mmol})$ of 1 in 125 ml of CHCl_{3} was stirred while adding $1.4 \mathrm{~g}(13 \mathrm{mmol})$ of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCl}$. The solution was refluxed for 18 hours, and 125 ml of $\mathrm{H}_{2} \mathrm{O}$ was added. The CHCl_{3} layer was removed, and the aqueous layer was extracted with two $75-\mathrm{ml}$ portions of CHCl_{3}. The combined extracts were evaporated in vacuo, yield 6.41 g . This material was chromatographed on 500 g of silica gel eluting with $\mathrm{CH}_{3} \mathrm{C}_{8} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(70: 25: 5$) and collecting 20-ml fractions. Fractions $233 \sim 275$ were combined on the basis of TLC in the above system in the ratio $65: 20: 10$ ($\operatorname{Rf} 0.25$) and evaporated in vacuo, weight 1.47 g . Chromatography was repeated on 25.5 g of silica gel using the TLC solvent system, yield $1.32 \mathrm{~g} ; \mathrm{mp} 268 \sim 273^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}^{\mathrm{EtOH}} \mathrm{nm}(\varepsilon) 220(28,000), 233$ (29,730), $282(27,760), 437(9,900), 545(4,450)$; IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 2955,2920,2855,1710,1625$, $1465,1405,1380,1210,1190,1115,1100,1050,1005 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33(3 \mathrm{H}, \mathrm{d}), 1.44(3 \mathrm{H}, \mathrm{s})$, $3.02(1 \mathrm{H}, \mathrm{t}), 3.50(3 \mathrm{H}, \mathrm{s}), 3.52(6 \mathrm{H}, \mathrm{s}), 3.60(1 \mathrm{H}, \mathrm{d}), 4.01(3 \mathrm{H}, \mathrm{s}), 5.49(1 \mathrm{H}, \mathrm{d}), 5.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.35$ $(1 \mathrm{H}, \mathrm{s}), 8.24(1 \mathrm{H}, \mathrm{s})$; FAB-MS m/z 622; calcd 622.

Anal Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{ClO}_{13}$: C 55.91, H 5.02, Cl 5.69.
Found: \quad C 55.89, H 4.98, Cl 5.21.
3-Bromosteffimycin B (15)
A solution of $5.0 \mathrm{~g}(8.5 \mathrm{mmol})$ of 1 in 50 ml of anhydrous pyridine was stirred while adding dropwise 0.460 ml (8.92 mmol) of Br_{2}. The solution was stirred at room temp for 24 hours, and 500 ml of 3 N HCl was added. The resulting mixture was extracted with three 250 ml portions of CHCl_{3} $\mathrm{CH}_{3} \mathrm{OH}(9: 1)$. The combined extracts were evaporated in vacuo to give 5.45 g of residue. This was
chromatographed on 500 g of silica gel eluting with $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(70: 25: 5)$ and collecting $20-\mathrm{ml}$ fractions. Fractions $76 \sim 152$ were combined on the basis of TLC in $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{3} \mathrm{OH}(65: 25: 10 ; \mathrm{Rf} 0.27)$ and evaporated in vacuo, yield 3.93 g . A portion of this was recrystallized from EtOH; mp $275^{\circ} \mathrm{C}$ (dec); UV $\lambda_{\text {max }}^{\mathrm{EtOH}} \mathrm{nm}(\varepsilon) 220$ (sh, 28,020), 231 $(29,400), 283(28,170), 440(10,330), 545(4,440) ;$ IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 2955,2855,1715,1625,1465$, $1405,1385,1210,1190,1170,1115,1090,1040 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.41(3 \mathrm{H}, \mathrm{d}), 1.53(3 \mathrm{H}, \mathrm{s}), 3.08$ $(1 \mathrm{H}, \mathrm{t}), 3.54(3 \mathrm{H}, \mathrm{s}), 3.55(6 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}, \mathrm{s}), 4.14(3 \mathrm{H}, \mathrm{s}), 5.19(1 \mathrm{H}, \mathrm{d}), 5.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.49(1 \mathrm{H}, \mathrm{s})$, $8.40(1 \mathrm{H}, \mathrm{s}), 12.54(1 \mathrm{H}, \mathrm{s}), 12.80(1 \mathrm{H}, \mathrm{s})$; FAB-MS $m / z 666 / 668$; calcd 666/668.

Anal Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{BrO}_{13}$: C 52.18, H 4.68, Br 11.97 .
Found: \quad C 51.78, H 4.70, Br 12.24.

3-Iodosteffimycin B (16)

A mixture of $5 \mathrm{~g}(8.5 \mathrm{mmol})$ of 1 and 1 liter of $\mathrm{H}_{2} \mathrm{O}$ was added to a solution of $19.4 \mathrm{~g}(85.0 \mathrm{mmol})$ of $\mathrm{H}_{5} \mathrm{IO}_{6}$ in 1 liter of $\mathrm{H}_{2} \mathrm{O}$ with stirring. The mixture was stirred and refluxed for 72 hours, cooled to room temp and extracted with four $500-\mathrm{ml}$ portions of $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(9: 1)$. The combined extracts were filtered, and the filtrate was evaporated in vacuo, yield 7.51 g . This material was chromatographed on 610 g of silica gel eluting with $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{3} \mathrm{OH}(70: 25: 5)$ and collecting $20-\mathrm{ml}$ fractions. Those fractions containing 16 ($90 \sim 225$) as determined by TLC in the above solvent system in the ratio of $65: 25: 10$ ($\operatorname{Rf} 0.30$) were combined and evaporated in vacuo to give 5.06 g ; mp $247 \sim 253^{\circ} \mathrm{C}$; UV $\lambda_{\max }^{\text {ETOH }} \mathrm{nm}(\varepsilon) 231(28,680), 246(22,710), 287(26,400), 441(11,250), 550$ $(3,410)$; IR $\nu_{\max }$ (Nujol) $\mathrm{cm}^{-1} 3490,1710,1675,1615,1575,1315,1280,1240,1135,1090,1025,755$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.53(3 \mathrm{H}, \mathrm{d}), 1.57(3 \mathrm{H}, \mathrm{s}), 3.08(1 \mathrm{H}, \mathrm{t}), 3.50(9 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{s}), 4.14(3 \mathrm{H}, \mathrm{s}), 5.19$ $(1 \mathrm{H}, \mathrm{d}), 5.60(1 \mathrm{H}, \mathrm{d}), 7.40(1 \mathrm{H}, \mathrm{s}), 8.40(1 \mathrm{H}, \mathrm{s}), 12.89(1 \mathrm{H}, \mathrm{s}), 13.20(1 \mathrm{H}, \mathrm{s})$; FAB-MS $m / z 714$; calcd 714.

Anal Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{IO}_{13}: \mathrm{C} 48.75$, H 4.37 , I 17.76.
Found: \quad C 48.57, H 4.57, I 16.03.

Acknowledgment
We thank Dr. Lubomir Baczynskyj for mass spectra, Stephen Mizsak for assistance with the interpretation of some NMR spectra, and Dr. L. H. Li and his associates for P388 murine leukemic assays.

References

1) Bergy, M. E. \& F. Reusser: A new antibacterial agent (U-20,661) isolated from a streptomycete strain. Experientia 23: 254~257, 1967
2) Brodasky, T. F. \& F. Reusser: Steffimycin B, a new member of the steffimycin family: Isolation and characterization. J. Antibiotics 27: 809~813, 1974
3) Kelly, R. C.; I. Schletter, J. M. Koert, F. A. Mac Kellar \& P. F. Wiley: Structures of steffimycin and steffimycin B. J. Org. Chem. 42: 3591~3596, 1977
4) Arara, S. K.: Molecular structure, stereochemistry and interactions of steffimycin B, a DNA-binding anthracycline antibiotic. J. Biomol. Struct. Dyn. 3: 377~385, 1985
5) Suzuki, H.: Direct iodination of polyalkyl-benzenes. In Organic Synthesis. Vol. 51. Ed., R. E. Benson, pp. 94~95, John Wiley \& Sons, Inc., New York, 1971
6) Arcamone, F.; G. Cassinelli \& S. Percy: Recent developments in the chemistry of doxarubicin-related anthracycline glycosides. In Anthracycline Antibiotics. Ed., H. S. El Khadem, p. 71, Academic Press, New York, 1982
7) Oкı, L.: Microbial transformations of anthracycline antibiotics and development of new anthracyclines. In Anthracycline Antibiotics. Ed., H. S. El Khadem, p. 86, Acedemic Press, New York, 1982

[^0]: + Deceased.
 tt Present address: The Upjohn Company, 301 Henrietta Street, Kalamazoo, Michigan 49001, U.S.A.

